A 650 kV/mu s Common-Mode Resilient CMOS Galvanically Isolated Communication System

Druh výsledku
článek v časopise v databázi Web of Science
Popis
This work presents a galvanically isolated chip-to-chip communication system that utilizes laterally coupled resonators in combination with a new differential full-wave receiver architecture. Lateral resonant coupling increases the isolation capability and significantly minimizes the intra-chip coupling capacitance of galvanic isolators beyond the limits of vertical coupling in standard CMOS. The presented system marries the merits of a laterally resonant coupled channel with a source-gate coupled low-power, low-latency RF detector architecture that enables high common-mode and differential noise immunity. A center-tapped transformer is used as the interface between the proposed fully differential receiver and the communication channel to further enhance the common-mode transient immunity (CMTI). The proposed system is integrated in a 0.25 mu m CMOS process with four metal layers and does not alter the native process or necessitate additional fabrication steps. The design does not require exotic packaging and achieves state-of-art CMTI of 650 kV/mu s at 5 kVpk isolation, sub-20ns propagation delay, and maintains a small form-factor of 0.95 mm(2). The GI system exhibits robust performance to fabrication variations, with less than +/- 0.3% and +/- 8% sensitivity to process variation and post-assembly chip distance offset, respectively.
Klíčová slova
Couplings
Magnetic resonance
Capacitance
Magnetic domains
transient analysis
Topology
Receivers
RF chip-to-chip communication
isolators
transceiver
lateral coupling
transformer
CMOS